
ANNAMALAI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.E. [COMPUTER SCIENCE AND ENGINEERING]

V – SEMESTER

Name :

Reg. No. :

FACULTY OF ENGINEERING AND TECHNOLOGY

CSCP509 – MICROPROCESSORS LAB

ANNAMALAI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.E. [COMPUTER SCIENCE AND ENGINEERING]

V – SEMESTER

 Certified that this is a bonafide record of work done by

 Mr./Ms.

Reg. No.

of B.E. (Computer Science and Engineering) in the CSCP508 – Microprocessors Lab

during the odd semester of the academic year 2021 – 2022.

Staff in-charge Internal Examiner External Examiner

Annamalai nagar

Date: / / 2021

FACULTY OF ENGINEERING AND TECHNOLOGY

CSCP509 – MICROPROCESSORS LAB

INDEX

EXP.

NO

DATE

NAME OF THE EXERCISE

PAGE

NO.

SIGN

1

Study of 8086 Microprocessor registers and

instruction sets.
1

2(a) Perform 16-bit Addition operation. 7

2(b) Perform 16-bit Subtraction operation. 9

3(a) Perform 16-bit Multiplication operation 11

3(b) Perform 16-bit Division operation 13

4 Calculate the length of a string. 15

5 Find the sum of the numbers in a word array. 18

6
Sorting number in descending order of an

unsorting array
21

7 Move a byte String from source to destination. 25

 1

AIM:

 To study 8086 microprocessor registers in 8086 and its instruction set.

DESCRIPTION:

The Intel 8086 is a 16-bit microprocessor used as a CPU in a microcomputer it has a 16-
bit data bus. So that it can read 16 data from (or) write 16 data to memory. The 8086 has a 20-bit
address bus and can address any one of the 220 memory location words will be stored in bus
consecutive memory location. If the 1st byte of a word is at an even address then the 8086 can read
entire word in one operation. If the 1st byte of a word is at an odd address then the 8086 will read
first byte in one operation.

INTERNAL ARCHITECTURE:

The 8086 CPU is divided into 2 independent functional part the bus interface unit and
execution unit.

BUS INTERFACE UNIT:

The bus interface unit sends out addresses, fetches instructions from memory, reads data
from ports and memory and writes data into ports and memory. It handles all transfer of data and
addresses on the buffer for execution.

SEGMENT REGISTERS:

The BIU contains four 16-bit segment registers. They are
1. The code segment register.
2. The stack segment register.
3. The extra segment register.
4. The data segment register.

QUEUE:

To speed up program execution the BIU fetches as many as six instructions ahead of time
from memory. The projected instruction bytes are held for the EU in a queue fetching the next
instruction while the current instruction execution is called pipelining.

INSTRUCTION POINTER:

This register holds the 16-bit address of the next code byte within this code segment. The
value contained in the instruction pointer is called OFFSET.

EX.NO: 1
DATE:

STUDY OF 8086 MICROPROCESSOR REGISTERS AND
INSTRUCTION SETS

 2

EXECUTION UNIT:

The EU of the 8086 tells the BIU where to fetch the instruction or data from decoder
instruction to execute the instruction. The component of the EU are control circuitry, instruction
decoder and ALU. The EU has 16-bit ALU which can Add, Subtract, AND, OR, XOR and INC
etc.

FLAG REGISTER:

A 16-bit flag register in the EU contains active flags. A flag is a Flip-flop, which indicates
some condition, produced by the execution of an instruction.

They are,

(i) C-Carry (ii) A-Auxiliary carry (iii) S-Sign (iv) P-Parity (v) Z-Zero

(vi) T-Trap (vii) I-Interrupt (viii) D-Direction (ix) O-Overflow.

GENERAL PURPOSE REGISTERS (GPR):

The EU has 8 general-purpose registers to store 8-bit data. They can be combined to store
16-bit data for 8-bit data storage; the registers are AH, AL, BH, BL, CH, CL, DH, and DL. For
16-bit data the registers are AX, BX, CX, DX, where AX is the accumulator.

POINTER AND INDEX REGISTER:

The EU register contains 16-bit source index (SI) 16-bit destination index registers (DI)
and 16-bit base pointer registers. These can be used for temporary storage of data. But their main
use is to hold the 16-bit offset of a data word in one of the registers.

ADDRESSING MODES:

The way in which the operand is specified is called an addressing mode. The addressing
modes supported by 8086 are:

1. Immediate addressing mode
2. Direct addressing mode
3. Register addressing mode
4. Register indirect addressing mode
5. Register relative addressing mode
6. Based index addressing mode
7. Relative based indexed addressing mode.

 3

8086 INSTRUCTION SET:

After we get the structure of a program worked and written down, the next step is
to determine the instruction statements required to do each part of the program.

DATA TRANSFER INSTRUCTIONS:

MOV : Copy byte from specified source to destination.

PUSH : Copy specified used to top of stack.

POP : Copy word from top of stack.

XCHG : Exchange bytes.

XLAT : Translate a byte in ALU using a table a memory.

INPUT/OUTPUT PORT TRANSFER INSTRUCTIONS:

IN Copy a byte from port to accumulator.

OUT Copy a byte from accumulator to port.

SPECIAL ADDRESS TRANSFER INSTRUCTIONS:

LEA Load effective address of operand into register.

LDS Load DS register and other register from memory.

LES Load ES register and other register from memory.

FLAG TRANSFER INSTRUCTIONS:

LAHF Load alt with the low byte of the register.

SAHF Store alt register to low byte of flag register.

ARITHMETIC INSTRUCTIONS:

ADD Add specified byte to byte.

ADC Add byte+byte+carry flag.

INC Increment specified byte.

 4

SUBTRACTION INSTRUCTIONS:

SUB. Subtract byte from byte.

SBB Subtract byte and carry flag from byte.

CMP Compare two specified bytes or two specified words.

MULTIPLICATION INSTRUCTIONS:

MUL Multiply unsigned byte by byte.

IMUL Multiply signed byte by byte.

DIVISION INSTRUCTIONS:

DIV Divide unsigned byte by byte.

IDIV Divide signed byte by byte.

LOGICAL INSTRUCTIONS:

NOT Invert each bit of a word.

AND AND each bit in a byte with the cell. But in another byte.

OR OR each bit in a byte with the cell. But in another byte.

SHIFT INSTRUCTIONS:

SHL/SAL Shift bit of word left, put zeroes in LSB.

SHR Shift bit of byte right, put zeroes in MSB.

SAR Shift bits of word right, copy old MSB to LSB.

ROTATE INSTRUCTIONS:

ROL Rotate bits of byte, left MSB to LSB and CF.

ROR Rotate bits of byte, right, MSB to LSB and CF.

 5

STRING INSTRUCTIONS:

REP An instruction prefix. Repeat following instruction until CX=0

 REPE An instruction prefix. Repeat following instruction until CX=0, and ZF=/!.

OUTS/OUTSB/OUTSW Output string byte or word to port.

PROGRAM EXECUTION TRANSFER INSTRUCTIONS:

(i) Uncondition Instruction Transfer:

CALL Call a procedure save return address on stack.

RET Return from procedure to calling program.

JMP Goto specified address to get next instruction.

(ii) Conditional Transfer Instructions:

JA Jump if above.

JAE Jump if above or equal.

JBE Jump if below or equal.

JC Jump if carry.

JE Jump if equal.

JNC Jump if no carry.

ITERATION CONTROL INSTRUCTIONS:

These instructions can be used to execute a series of instructions and number of
iterations that recall the specified instruction.

LOOP Loop three a sequence of instruction until LX=0.

JNZ Jump to specified address if CX=0.

INTERRUPT INSTRUCTIONS:

INT Interrupt program execution call service procedure.

 INTO Interrupt program execution if OF=1.

 6

HIGH LEVEL LANGUAGE INTERFACE INSTRUCTION:

ENTER Enter procedure.

LEAVE Leave procedure.

BOUND Check if effective address within specified array bound.

EXTERNAL HARDWARE SYNCHRONIZATION INSTRUCTIONS:

HLT: Halt until interrupt or reset.

WAIT: Wait until signal on the test pin.

ESC: Escape to external coprocessor.

RESULT:

 Thus, the internal architecture and instruction set of 8086 microprocessor
registers and instruction sets have been studied.

 7

EX.NO: 2(a)
DATE: PERFORM 16-BIT ADDITION OPERATION

Aim:
 To perform 16-bit addition operation using 8086 microprocessor kit

Theory:
Move the first data to accumulator. Then using the add instruction 16 bit addition is performed.

Flowchart:

MASM code:

datahere segment
A1 dw 1100h
A2 dw 1102h
 A3 dw 1104h
datahere ends
codehere segment
assume cs:codehere, ds:datahere
ORG 1000h
MOV AX, [A1]
ADD AX, [A2]
MOV [A3], AX
HLT

Start

Load addend in accumulator

Add the augend

Store the result in the memory

Stop

 8

codehere ends
end

Opcode Table:

Memory Address Opcode Mnemonics Comments

1000 A1 MOV AX,[A1] Addend in AX
1001 00
1002 11
1003 03 ADD AX,[A2] Add
1004 06
1005 02
1006 11
1007 A3 MOV [A3],AX Store the result
1008 00
1009 12
100A F4 HLT Halt

Sample Data:

Input: Output:

[1100] =11 [1200]=33

[1101]=11 [1201]=33

[1102]=22

[1103]=22

Result:

 The 16-bit Arithmetic operation for addition is performed using 8086 microprocessor kit.

 9

 Aim:

To Perform 16-bit subtraction operation using 8086 microprocessor kit.

Theory:
 Move the minuend to a register pair. Then using the sub instruction 16 bit
subtraction is performed.

Flowchart:

MASM code:

datahere segment
A1 dw 1100h
A2 dw 1102h
A3 dw 1104h
datahere ends
codehere segment
assume cs: codehere, ds:datahere
 ORG 1000h
MOV AX, [A1]
 SUB AX, [A2]
MOV [A3], AX
HLT

EX.NO: 2(b)
DATE: PERFORM 16-BIT SUBTRACTION OPERATION

Start

Load minuend in Accumulator

Subtract the subtrahend

Load result in memory

Stop

 10

codehere ends
end

Opcode Table:

Memory Address Opcode Mnemonics Comments

1000 A1 MOV AX,[A1] Minuend in AX
1001 00
1002 11
1003 2B SUB AX,[A2] Subtract
1004 06
1005 02
1006 11
1007 A3 MOV [A3],AX Store the result
1008 00
1009 12
100A F4 HLT Halt

Sample Data:

Input: Output:

[1100] =33 [1200]=11

[1101]=33 [1201]=11

[1102]=22

[1103]=22

Result:

 The 16-bit Arithmetic operation for subtraction is performed using 8086 microprocessor kit

 11

EX.NO: 3(a)
DATE: PERFORM 16-BIT MULTIPLICATION OPERATION

Aim :
To Perform 16-bit multiplication operation using 8086 microprocessor kit.

Theory:
 Assign multiplicand and multiplier to memory location. Move the multiplicand to

register AX. Multiply with multiplier. Store the product in AX and DX

Flowchart:

MASM code:

datahere segment
a dw 1500h
b dw 1502h
c dw 1504h
d dw 1506h
datahere ends
codehere segment
Assume cs: codehere, ds:datahere
ORG 1000h
MOV AX,[a]
MUL [b]
MOV [c],AX

Star
t

Load multiplicand in Accumulator

Load result in memory locations

Stop

 12

MOV[d],DX
HLT
codehere ends
end

Opcode Table:

Memory Address Opcode Mnemonics Comments
1000 A1 MOV AX,[a] Move content of memory to
1001 00 accumulator
1002 15

1003 F7 MUL [b] Multiply the memory content to
1004 26 accumulator
1005 02
1006 15

1007 A3 MOV [c],AX Move accumulator to memory
1008 04
1009 15

100A 89 MOV[d],DX Move DX content to Memory
100B 16
100C 06

100D 15

100E F4 HLT Halt the program

Sample Data :

Input: OUTPUT:

 1500 – 03h. 1504 – 06h

 1501 – 00h. 1505 – 00h

 1502 – 02h

 1503 – 00h

RESULT:

Thus the 16-bit multiplication is performed using microprocessor.

 13

EX.NO: 3(b)
DATE: PERFORM 16-BIT DIVISION OPERATION

AIM :-
 To perform 16-bit division operation using 8086 micropressor kit.

Theory:-

 Assign dividend and divisor to memory location. Move the dividend to register AX.
Divide using divisor. Store the quotient and remainder in AX and DX.

FLOWCHART:

MASM code :-

datahere segment

a dw1600h
b dw 1602h
c dw 1604h
d dw 1606h
datahere ends
codehere segment
assume cs:codehere,ds:datahere
ORG 2010h
MOV AX ,[a]
DIV [b]
MOV[c],AX

Start

Load divident in Accumulator

Divide with the divisor

Load result in memory locations

Stop

 14

MOV[d],DX
 HLT
Codehere ends
end

OPCODE TABLE:

Memory Address Opcode Mnemonics Comments
2010 A1 MOV AX,[a] Move the content of memory to
2011 00 accumulator

2012 16

2013 F7 DIV [b] Divide the content of memory
2014 36 with accumulator
2015 02

2016 16

2017 A3 MOV[c],AX

Move accumulator to memory 2018 04

2019 16
201A 89 MOV[d],DX

Move the DX content to memory
201B 16
201C 06

201D 16

201E F4 HLT Halt the program

SAMPLE DATA :

INPUT : OUTPUT :-

1600 – 08h 1604 – 04h

1601 – 00h 1605 – 00h

 1602 – 02h

 1603 – 00h

RESULT :-

Thus the 16-bit division is performed using microprocessor

 15

Aim :
To find the number of characters in a string.

Theory :

Addressing the string is done using SI register, and the DX register is used to store the
number of characters. End of string is detected using FF. Hence each character is detected
using FF.Hence each character is fetched from memory and is compared with FF. If the zero
flag is set, then it denotes end of string, the count have been stored in DX, by incrementing it
after each comparison.

Flowchart:

EX.NO: 4
DATE: Calculate the length of a string

Start

(SI)= Starting address of the string
(DX)= FFFF
(AH)= FF

(DX)=(DX)+1

(AL)=[(SI)]
(SI)=(SI)+1

No
(AH)=(AL)

Yes

Move (DX) to a memory location

Stop

 16

MASM code:

Datahere segment

 A1 dw 1100h

Datahere ends

Codehere segment

Assume cs:codehere , ds: datahere

 ORG 1000h

MOV SI,1200h

MOV DX,0FFFFh

MOV AH,0FFh

L1 : INC DX

MOV AL,[SI]

 INC SI

 CMP AH,AL

JNZ L1

MOV [A1],DX

 HLT

Codehere ends

 end

 17

Opcode Table:

Address Opcode Mnemonics Comments
1000 BE MOV SI,1200 Load the starting
1001 00 Address of the string in SI
1002 12

1003 BA MOV DX,FFFF Initialize DX
1004 FF

1005 B4 MOV AH,FF Load AH with end of the
string

1006 FF
1007 42 NOTEND: INC DX Increment count
1008 8A MOV AL,[SI] Get string character to AL
1009 04

100A 46 INC SI Increment String index
100B 3A CMP AH,AL Compare string with FF
100C E0

100D 75 JNZ NOTEND Jump if not end
100E F8

100F 89

1011 16 MOV [1200],DX Store the length
1012 00

1013 11

1014 F4 HLT Halt the process

Sample data :

Input : Output:

 1200 28 1100 04

1201 13

1202 10

1203 11

1204 FF

Result:

 Thus the program to find the number of character in a string is executed and verified.

 18

EX.NO: 5
DATE: FIND THE SUM OF THE NUMBERS IN A WORD ARRAY

Aim:

To obtain the sum of a 16-bit array in memory, using index register and store the
result in

memory.

Theory:

Initialize the index register SI with the start address and CX with the length of the
array. Clear the accumulator and add the contents of SI in it. Increment the index to point
to the next word and decrement CX by 1. Repeat until CX=0 and store the sum in a
memory location.

Flowchart:

Start

(CX)=05

(SI)=Start add
AX=0000

(AX)=(AX)+((SI))
(CX)=(CX)+2
(SI)=(SI)+2

No
(CX) =0

Yes

(AX)=(AX)+((SI))

(CX)=(CX)+2
(SI)=(SI)+2

Stop

 19

MASM code:

datahere segment

A1 dw 1100h

Sum dw 1200h

datahere ends

codehere segment

assume cs: codehere, ds: datahere

ORG 1000h

MOV CX, 05h

MOV AX, 0

MOV SI,AX

L1: ADD AX, A1[SI]

 ADD SI, 2

LOOP L1

MOV [Sum], AX

 HLT

Codehere ends

end

 20

Opcode Table:

Memory Opcode Mnemonics Remarks
Address

1000 B9 MOV CX, 05h CX= 5
1001 05 No of elements
1002 00
1003 B8 MOV AX, 0 Clear AX
1004 00
1005 00
1006 8B MOV SI,AX Initialize SI to start of the array
1007 F0
1008 03 L1: ADD AX, Add accumulator and content of
1009 84 START[A1] Array
100A 00
100B 11
100C 83 ADD SI,2
100D
100E

C6
02

 100F E2 LOOP L1 Decrement CX and check if zero
 1010 F7
 1011 A3 MOV [Sum],AX Store the result
 1012 00
 1013 12
 1014 F4 HLT Halt the process

Sample Data:

Input: Output:

 Number of Elements = 5.

 [1200] = 000F

RESULT:

Thus, the sum of the numbers in a word array is obtained.

[1100] = 0001

[1102] = 0002

[1104] = 0003

[1106] = 0004

[1108] = 0005

 21

INTERCHANGE (AX) AND (A1 [BX + 2])

POINT TO NEXT
COUNT 2 = COUNT 2 - 1

1

EX.NO: 6
DATE:

SORTING NUMBER IN DESCENDING ORDER OF AN
UNSORTED ARRAY

Aim:
To arrange an array of unsorted words in descending order.

Theory:

The algorithm used here is bubble sort. Let
N : Number of elements in the array, content of CX.
A1 : Array name of start address of array.
I : Index in this array, here content of DI.

Start at the Beginning of the array, and considering a pair of elements at a time, put the pair
in descending order. Thus arrange successive pairs of elements in descending order. After
the first pass through the array the smallest element in at the end of the array :Hence during
the second pass consider only the first N – 1 element and so on.

Flowchart:

START 1

I=I+2

Count = 8 (BX) = (BX) + 2
Count 1 = 7

(CX) =0007 NO
3 2 COUNT 2 = 0

Count 2 = Count1

(DI) = (CX)
 COUNT 1 = COUNT1 – 1
 (CX) = (CX) - 2

I = (BX) = 0000
(AX) = (A1 [BX])

 NO

 3 (CX) = 0
2

 YES YES

(AX) = (A1[BX + 2])
 CF=0 STOP

CF =1 NO

 22

MASM code:
datahere segment
A1 dw 1100h
datahere ends
codehere segment
assume cs: codehere, cs: datahere

ORG 1000h
MOV CX, 07h

L1: MOV D1, CX
MOV BX, 00h

L2: MOV AX, A1 [BX]
CMP AX, A1 [BX + 2]
JNC PROCEED
XCHG AX, A1 [BX + 2]
 MOV A1 [BX], AX

PROCEED: ADD BX, 2
LOOP L2
NOP
MOV CX, DI
LOOP L1
HLT

Codehere ends

end

Opcode Table:

Memory Address Opcode Mnemonics Remarks
1000 B9 MOV CX, 07 CX= count -1
1001 07
1002 00

1003 8B L1: MOV D1, CX Save CX in DX
1004 F9
1005 BB MOV BX,0 Clear BX
1006 00
1007 00

1008 8B L2: MOV AX, A1[BX]
1009 87
100A
100B

00
11

 23

100C 3B CMP AX, A1 [BX+ 2] Compare first to elements
100D 87
100E 02
100F 11

1010 73 JNC PROCEED
1011 08

1012 87 XCHG AX, A1 [BX+ 2] Interchange if less
1013 87
1014 02
1015 11

1016 89 MOV A1 [BX], AX
1017 87
1018 00
1019 11

101A 83 PROCEED:ADD BX, 2 Increment index
101B C3
101C 02

101D E2 LOOP L2 And proceed if not
101E E9

101F 90 NOP

1020 8B MOV CX, D1 Move a copy of count in CX
1021 CF

1022 E2 LOOP L1 Repeat until CX=0
1023 DF

1024 F4 HLT Halt the process

 24

Sample Input and output:

Number of Elements = 8

Unsorted array Starting from A1 = 1100

 [1100] = 0022
 [1102] = 0011
 [1104] = 0033
 [1106] = 0077
 [1108] = 0055
 [110A] = 0066
 [110C] = 0088
 [110E] = 0044

Sorted array

:

[1100] =

0088

 [1102] = 0077
 [1104] = 0066
 [1106] = 0055
 [1108] = 0044
 [110A] = 0033
 [110C] = 0022
 [110E] = 0011

RESULT:

Thus, an array of unsorted words is arranged in descending order.

 25

EX.NO: 7
DATE:

MOVE A BYTE STRING FROM SOURCE TO
DESTINATION

AIM :

 To Move a Byte String of length FF from a source to a destination.

THEORY:

String primitives require initialization of the index registers and SI and DI

registers are initialized to start of the source and start of the destination array

respectively. The direction flag is cleared to facilitate auto incrementing of the index

registers. The CX register is used to perform the operation repeatedly. The string

primitive used in MOVSB which moves one byte from source operand to destination

operand. The SI and DI registers are incremented automatically as DE=0.

FLOW CHART:

START

SET CX =Array length, SI= Start address and
DI=End address

DF=0 (CLEAR)

Move 1 byte from S1 to D1

Decrement CX

If
CX=0

STOP

 26

MASM Code:

Datahere segment

SOU dw 100Eh

DES dw 110Eh

 Datahere ends

Codehere segment

Assume cs: codehere, ds: datahere

ORG 1000h

MOV SI, [SOU]

MOV DI, [DES]

MOV CX, 0FFH

CLD

MOVE : MOVSB

 Loop MOVE

 HLT

Codehere ends

end

 Opcode:

Memory Address Opcode Mnemonics Remarks
1000 BE MOV SI, [SOU] Move source address to SI
1001 0E
1002 10
1003 BF MOV DI,[DES] MOVE destination address to

DI 1004 0E
1005 11
1006 B9 MOV CX, 0Ah CX=Count=10
1007 FF
1008 00
1009 FC CLD Clear the destination flag
100A A4 MOVE: MOVSB CX=Count=10
100B E2 Loop MOVE Repeat Until CX=0
100C FD
100D F4 HLT Halt the process

 27

SAMPLE DATA:

INPUT: OUTPUT:

 Fill the location from 100E to 10 locations with 55 [110E] to [110E]= 55

S -Array=100E

D -Array=110E

[100E] = 55 [110E] = 55

[100F] = 55 [110F] = 55

[1010] = 55 [1110] = 55

[1011] = 55 [1111] = 55

[1012] = 55 [1112] = 55

[1013] = 55 [1113] = 55

[1014] = 55 [1114] = 55

[1015] = 55 [1115] = 55

[1016] = 55 [1116] = 55

[1017] = 55 [1117] = 55

RESULT:

 Thus the program to move string from a source to a destination is executed
and verified.

